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Abstract

No-take marine reserves are effective management tools used to restore fish biomass and community structure in areas
depleted by overfishing. Cabo Pulmo National Park (CPNP) was created in 1995 and is the only well enforced no-take area in
the Gulf of California, Mexico, mostly because of widespread support from the local community. In 1999, four years after the
establishment of the reserve, there were no significant differences in fish biomass between CPNP (0.75 t ha21 on average)
and other marine protected areas or open access areas in the Gulf of California. By 2009, total fish biomass at CPNP had
increased to 4.24 t ha21 (absolute biomass increase of 3.49 t ha21, or 463%), and the biomass of top predators and
carnivores increased by 11 and 4 times, respectively. However, fish biomass did not change significantly in other marine
protected areas or open access areas over the same time period. The absolute increase in fish biomass at CPNP within a
decade is the largest measured in a marine reserve worldwide, and it is likely due to a combination of social (strong
community leadership, social cohesion, effective enforcement) and ecological factors. The recovery of fish biomass inside
CPNP has resulted in significant economic benefits, indicating that community-managed marine reserves are a viable
solution to unsustainable coastal development and fisheries collapse in the Gulf of California and elsewhere.

Citation: Aburto-Oropeza O, Erisman B, Galland GR, Mascareñas-Osorio I, Sala E, et al. (2011) Large Recovery of Fish Biomass in a No-Take Marine Reserve. PLoS
ONE 6(8): e23601. doi:10.1371/journal.pone.0023601

Editor: Howard Browman, Institute of Marine Research, Norway

Received February 28, 2011; Accepted July 20, 2011; Published August 12, 2011

Copyright: � 2011 Aburto-Oropeza et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: OA-O was supported by a Kathryn Fuller Fellowship - WWF Scientific Program. Additional funding for this research was provided by the David and
Lucile Packard Foundation, The Tinker Foundation, the Robins Family Foundation, the Pew Fellowship Program on Marine Conservation, and the Walton Family
Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: maburto@ucsd.edu

Introduction

Overfishing has impacted marine biodiversity and ecosystems

both directly (through removal of significant biomass) and

indirectly (by changing ecological linkages) throughout history

[1,2]. No-take marine reserves have been proposed as one of the

most successful management tools to reverse these degradation

trends [e.g., 3]. Evidence supporting the positive effects of no-take

reserves include a greater abundance and biomass of fish inside

marine reserves than in fished areas [see meta-analysis in 4]; an

exponential increase of predatory fish biomass [e.g., 5,6]; and

shifts in species composition and trophic cascades that result in the

restoration of natural marine communities within protected areas

[7–10]. While these ecological changes operate on decadal times

scales through a series of transient states [5,11,12], initial

detections of both direct effects of area closures on target species

and indirect effects on other taxa through cascading trophic

interactions can be observed much sooner (5 and 13 years,

respectively) [13,14].

In addition to the aforementioned conservation benefits, well-

enforced marine reserves help reduce local poverty and increase

the economic revenue of coastal communities [15,16]. Protected

areas with locally managed resources and stakeholder buy-in can

be more successful than areas with top down, federally mandated

preservation [see 17]. However, marine reserve agendas have

faced considerable opposition from different sectors of the society

(e.g. commercial and recreational fisheries), only 0.1 percent of the

world’s ocean is completely protected from extractive activities,

and most reserves suffer from poor management and enforcement

[18,19]. Moreover, the long-term success of marine reserves is a

social issue that requires strong local leadership, social cohesion,

involvement and effective self-enforcement within the community,

and inter-generational coordination [20,21].

Most of our knowledge of the benefits produced by no-take

marine reserves comes from reserves smaller than 10 km2, and

from single-time comparisons between protected areas and nearby

fished sites [e.g., 4,13,22,23]. Large relative increases in fish

biomass (up to 20-fold) have been observed [e.g., 5]; but since

these recoveries have happened in reserves less than 1 km2, the

absolute increase in biomass has been limited. Furthermore, few

marine reserves have been able to restore fish biomass to values

similar to unfished habitats [24,25]. Maybe because of that, most

ecological and economic benefits (via spillover of adults to nearby

unprotected areas) have been found for distances of only one

kilometer on average beyond the reserve’s boundaries [26].

Fisheries regulations in the Gulf of California (GOC) are

numerous and complex as a result of the large number of exploited

marine resources, and they have not been successful in recovering
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fish stocks [27,28]. Even with its relatively low population size, the

GOC is no exception to worldwide coastal and marine

degradation trends. Overfishing, destruction of critical habitats,

and the lack of proper planning that outline conservation and

fisheries management priorities threaten marine biodiversity in the

GOC [e.g., 28–32]. Large scale tourism developments in some

areas in the GOC, though often touted as an alternative to fishing,

have exacerbated problems by increasing local population sizes,

fishing effort to feed tourists, and human-nature interactions [33].

These issues will become more severe as commercial and

transportation development continues to grow in the region

[34], but while efforts to restore degraded ecosystems (e.g.

mangrove forests) are improving, no studies have demonstrated

that recovery of GOC marine ecosystems is plausible.

No-take marine reserves currently represent the most widely-

promoted tool for the conservation and restoration of coastal and

marine ecosystems in the GOC [35], especially in the absence of

strong governmental enforcement programs at both national and

regional scales. However, most Marine Protected Areas (MPAs) in

the GOC, are multiple use areas that include zones ranging from

open access to no-take areas; although no-take areas represent less

than 5% of the majority of MPAs [36,37], and have not recorded

any significant positive changes in terms of recovery of fish or

economic benefits [17].

An outlier among GOC MPAs is Cabo Pulmo National Park

(CPNP), an area near the southern end of the Baja California

Peninsula, designated a National Park in 1995 mainly to protect its

large coral communities [38]. CPNP, though one of the smallest

MPAs in the region (Table 1), has the largest percentage of core

(no-take) area (35%). Due to the determined action of local

families, protection and enforcement as a no-take reserve has

expanded to include nearly 100% of CPNP’s area. In 1999, we

visited 60 reefs throughout the GOC from Cabo San Lucas at the

southern tip of the Baja California Peninsula to the Midriff Islands

in the Upper GOC [35], including reefs inside CPNP (Fig. 1). We

replicated that study ten years later. Here we report the changes in

fish diversity and biomass at CPNP, relative to other MPAs and

unprotected areas in the GOC, between 1999 and 2009.

Results

Fish species richness increased significantly at CPNP from 1999

(average = 15 species per transect) to 2009 (25 species per transect;

ANOVA, p,0.01). In contrast, reefs inside no-take areas (‘‘core

zones’’) in other MPAs (1999 = 22, 2009 = 18; ANOVA,

p,0.0001) and in open access areas (1999 = 20, 2009 = 17,

ANOVA, p,0.0001) showed a significant decrease in species

richness. Additionally, the diversity of top predators (measured as

the inverse of Simpson’s Index) increased significantly between

1999 and 2009 at CPNP (p,0.05); while elsewhere in the GOC, it

either remained the same or decreased significantly (see Table S1).

In 1999, fish biomass at CPNP was not significantly different

from that in the no-take areas or core zones in other MPAs and in

open access areas (Fig. 2; Student’s t-test, p.0.05). Between 1999

and 2009 fish biomass increased significantly in all trophic groups

at CPNP at annual rates varying between 12 and 25% (Table 2).

After 10 years, total biomass at CPNP increased from 0.75 to

4.24 t ha21, a dramatic increase of 3.49 t ha21 that corresponds

to a 463% change. Change in fish biomass for each trophic group

was higher at CPNP than at other core zones or in open access

areas (sign test, p = 0.03). Furthermore, while growth rates at

CPNP differed significantly from the null hypothesis of zero

growth for all trophic groups (p,0.03), in all other areas rates did

not differ from zero in any trophic group (Table 2). Consequently,

fish biomass at CPNP in 2009 was 5.4 times larger than in other

core zones and open access areas (Fig. 2). In contrast, differences

in fish biomass between other core zones and open access areas

were not different in 1999 or 2009 (Fig. 2; Student’s t-test,

p = 0.15).

Table 1. List of MPAs established by the Mexican Federal Government in the Gulf of California.

Marine Protected Areas
Gulf of California Date Established Marine Area (km2) No-take (km2) No-take %

Cabo San Lucas*
Flora and Fauna Area Protection

1973 40 0 0

Alto Golfo de California y Delta del Rı́o Colorado
Biosphere Reserve

1993 5,416 882.5 16.3

Cabo Pulmo*
National Park

1995 71 25.0 35.1

Bahı́a de Loreto*
National Park

1996 1,837 1.3 0.07

Archipielago Islas Marı́as
Biosphere Reserve

2000 6,173 148.4 2.4

Archipiélago de Espiritu Santo*
National Park

2000 487 6.7 1.4

Isla San Pedro Martir*
Biosphere Reserve

2002 299 11.1 3.7

Archipiélago San Lorenzo*
National Park

2005 584 88.0 15.1

Archipiélago Islas Marietas
National Park

2005 14 0.8 5.7

Bahia de los Angeles, Canal de Ballenas y Salsipuedes*
Biosphere Reserve

2007 3,880 2.1 0.05

*MPAs with rocky reefs included in this study.
doi:10.1371/journal.pone.0023601.t001
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Mean biomass within every trophic group increased significant-

ly between 1999 and 2009 at CPNP (Table 2), and the biomass of

top predators increased by 1070% (Fig. 2). The relative variance

(calculated as the square of the coefficients of variation) in

between-transect biomass also increased significantly for top

predators (Table 2), implying that spatial aggregation of fish

schools increased significantly during the intervening decade.

Differences in size class frequencies indicate that the largest

fishes encountered in our surveys were within CPNP, and that

there were more individuals in the largest size classes at CPNP

than at other reefs in the GOC. Furthermore, for 25 of 88 species

encountered in our transects (e.g., Mycteroperca spp., Lutjanus spp.,

and Scarus spp.), the largest individuals observed in 2009 were at

CPNP.

CPNP exhibited the largest absolute recovery of biomass in a

marine reserve, and the faster relative increase in biomass of top

predators, with a 30% annual increase of predatory fish (Fig. 3).

To the best of our knowledge, only CPNP and Cabo de Palos

Marine Reserve in the Mediterranean [39] have recovered total

fish biomass to values larger than 4 t ha21, and shown ratios of

biomass inside the reserve to that in the surrounding fished areas

larger than 5 times more biomass inside the reserve.

Discussion

Our 10-year comparison demonstrates that CPNP has been an

effective marine reserve for the recovery of reef fish biomass within

its boundaries. After fifteen years of protection, species richness

and total biomass are greater, and top predators are more

abundant. The larger densities and individual sizes of fish at CPNP

(Fig. 4), combine to create an average biomass that is more than

five times larger than the average biomass in open access areas in

the Gulf of California (GOC).

In contrast to CPNP, core zones in other MPAs in the GOC

have not yielded a significant increase in fish biomass or species

richness, and are no different from open access areas. For

example, two small no-take marine reserves created in 2001 at

Loreto Bay National Park [40] have stabilized fish abundances (as

opposed to declines observed elsewhere), but probably as a result

of their small size (1.4 km2 of total no-take area), they have not

resulted in the recovery of fish populations [17].

Regrettably, we only sampled two reefs inside CPNP in 1999

(compared to 11 sites in 2009), as we did not anticipate such a

recovery in the reef fish assemblage. However, analyzing data

from only the two sites that were visited in both 1999 and 2009

yielded qualitatively similar increases (the minimal degrees of

freedom for both dates does not allow accurate tests of

significances). Furthermore, we have been monitoring 45 reefs in

the GOC on an annual basis for more than a decade [29,41,42],

and have visited CPNP throughout the year since 2005 to study

the behavior of large groupers (Mycteroperca jordani, M. rocacea) and

characterize reef fish spawning aggregations. These observations

allow us to confidently validate our results describing a fish

community that rebounded remarkably from 1999 to 2009, from

an area with few top predators similar to nearby open access areas

to a no-take marine reserve dominated by top predators.

Figure 1. Location of sampling sites. A) Sites surveyed by Sala et al. in 1999 [35], and resurveyed here in 2009. Dots inside the circle represent
sites surveyed in Cabo Pulmo National Park in 1999. Dots inside squares represent sites in core zones (no-take areas) of other marine protected areas;
the rest represent open access sites. B) Map of 11 sites surveyed at Cabo Pulmo National Park in 2009.
doi:10.1371/journal.pone.0023601.g001
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CPNP exhibited the largest absolute increase in biomass in a

marine reserve reported in the literature [e.g., 6, 43–45]. Previous

studies have reported larger relative increases of biomass [see

review in 4], but the magnitude of change was smaller. The most

striking result is that full, complete recovery of a degraded fish

community is possible (when placed in the right area and governed

correctly), even to the level that is comparable to remote habitats

that never have been impacted by fishing and other local human

impacts [25,46]. Such examples of ‘‘full’’ recovery are extremely

rare [44], and we could not have expected that it occurred in only

ten years.

The abundance of top predators and carnivores at CPNP is

approaching the inverse trophic pyramid that characterizes reef

fish assemblages that have faced little or no fishing pressure

[25,46]. The presence of sharks is another characteristic of healthy

marine ecosystems [47,48]. While not encountered on survey

transects, large sharks (e.g. Galeocerdo cuvier, Carcharhinus leucas,

Triaenodon obesus) were commonly observed at survey sites at CPNP

but rarely or never observed at other reefs surveyed or at historic

shark areas in the GOC [authors’ pers. obs.; 33].

The ecological reasons for such a large increase in fish biomass

probably include several factors: 1) the reserve was larger than the

size of marine reserves studied by scientists (on average smaller

than 10 km2) and thus can harbor permanent populations of large

reef fishes with large home ranges, 2) the coral habitat was intact

[38], 3) the reserve included spawning areas for large predators

[49], and 4) it is located in an area of high productivity driven from

both the spatial heterogeneity generated by long basaltic dykes

that run parallel to the coast [50], and its location in the transition

zone between the enclosed Gulf of California and the open waters

of the Pacific Ocean.

The success of CPNP is greatly due to local leadership, effective

self-enforcement by local stakeholders, and the general support of

the broader community. Protected areas with locally managed

resources and stakeholder buy-in can be more successful than areas

with top down, federally mandated preservation [see 17]. This

model is considered the most viable in rural settings where people

rely on local natural resources for their livelihoods. Boat captains,

dive masters, and local people in general participate in various

activities to enforce the regulations of CPNP to visitors and among

themselves, including surveillance, fauna protection (e.g. sea turtle

nesting sites), and beach and ocean cleaning programs. These efforts

have generated robust social bonds within the community [51], key

elements for successfully managing aquatic resources and securing

the livelihoods of the communities that depend on them [21].

The ecological successes of CPNP are steadily translating into

economic benefits within the small (,100 residents) rural village of

Cabo Pulmo and the surrounding areas. A recent study found that

the locally owned, small-scale tourism operators in Cabo Pulmo

generated US$538,800 in 2006 and have continued to grow at a

manageable rate [52]. This amount is generated by less than 30

people, working in five small businesses, and producing approx-

imately US$18,000 per capita; an amount significantly higher than

the per capita Gross National Income in Mexico. While tourism is

Figure 2. Average biomass of fish trophic groups surveyed in
1999 and 2009 in each site category in the Gulf of California.
doi:10.1371/journal.pone.0023601.g002

Table 2. Changes in fish biomass between 1999 and 2009 in (a) Cabo Pulmo National Park, (b) other no-take or core zones, and (c)
open-access areas.

Top
Predators Carnivores Zooplanktivores Herbivores Total

Cabo Pulmo F +

t + + + + +

U + + + +

r 0.25 0.16 0.12 0.16 0.17

Core zones F +

t

U

r 0.005 0.005 0.03 20.01 0.003

Open access F

t

U

r 20.03 0.009 20.01 20.03 20.01

Rows indicate the test used or parameter measured (F for Fisher’s equality of variances test; t for Student’s t-test for unequal sample sizes and unequal variances; U for
Mann-Whitney’s rank-sum test, and r for the rate of change). Plus signs (+) indicate a significant increase in biomass variance (F), in mean biomass (t), or in ranked
biomass (U); blank spaces indicate non-significant changes.
doi:10.1371/journal.pone.0023601.t002
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not always the best option in ecologically sensitive areas (e.g., when

excessive tourism demand for limited natural resources limits their

availability for the local people and threatens ecosystem viability),

these residents are showing ability for success, when local people

use, manage, and benefit from their local resources.

Materials and Methods

In 2009, we completed underwater visual surveys at 73 reefs in

the GOC. Of those, 37 were the same sites surveyed by Sala et al.

in 1999 [35] (including 2 in CPNP, Fig. 1A), and a total of 11 were

located inside CPNP (Fig. 1B). In order to ensure the compatibility

of data, we utilized the same survey methods described by Sala

et al. [35]. Divers swam along 50 m transects observing and

documenting fish species. Divers counted and estimated the size of

all fishes belonging to all species within a five meter wide belt along

each transect during two passes (250 m2 total). Different

behavioral groups (mobile species versus territorial species), were

surveyed during each pass to ensure that individuals were only

counted once. At each site, we conducted four replicate transects

Figure 3. Comparison of the magnitude and rate of change of fish biomass at Cabo Pulmo National Park relative to other marine
reserves around the world. Data from other reserves were restricted to the few studies on temporal changes of total fish biomass (including all species)
inside the same reserve. In all panels numbers in parentheses above bars represent years between surveys. In panels (b) and (c), relative annual rate of change
between time zero and time t is calculated as: r= ln(xt/x0)/t. Data sources: Mombasa [6], New Caledonia [7], Saba [43], St. Lucia [45], Sumilon and Apo [44].
doi:10.1371/journal.pone.0023601.g003

Figure 4. Examples of the fish assemblage at Cabo Pulmo National Park (CPNP). (a) groupers, (b) snappers, (c) jacks, and (d) parrotfishes.
Photographs were taken in the summers of 2008–2010 (Photography by: Octavio Aburto).
doi:10.1371/journal.pone.0023601.g004
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at 20 m depth and four transects at 5 m depth. Using this method,

we completed 435 total transects in 2009.

Typically, the majority of the area within any of Mexico’s

MPAs’ boundaries allows for extractive activities, with only a small

no-take area, known as ‘‘core zone,’’ designated for scientific

research and monitoring. Seven of the ten MPAs in the GOC

protect less than 6% of their total area through core zones

(Table 1). In order to test CPNP’s effectiveness as the only well

enforced no-take marine reserve in the GOC, we divided our sites

into three categories: (1) CPNP; (2) core zones in other MPAs, and

(3) open access areas. For each category and for both survey

periods (1999 and 2009), we calculated species richness, size

structure, and biomass of all reef fishes. We also calculated

biomass for each of four broad trophic groups: top predators,

carnivores, zooplanktivores, and herbivores. We limited trophic

categorization to these broad and robust groups because diets of

species change ontogenetically and with the environment [53]. In

order to maximize comparability with existing studies, biomass is

expressed as tonnes per hectare. The biomass of individual fish

was calculated using the allometric length-weight conversion:

W = a TLb, where parameters a and b are species-specific

constants, TL is total length in mm, and W is weight in grams.

Length-weight fitting parameters were obtained from FishBase

[54]. Differences in total transect biomass among trophic

categories and between years were tested by means of a t test for

unequal variances, and by a non-parametric Mann-Whitney U-

test. Because fish schooling behaviour may also differ between

years, we also tested for differences in relative biomass variance

(the variance of the data standardized by the mean; an indicator of

Poisson aggregation) using a variance-ratio F-test.

We also surveyed peer-reviewed scientific literature to compile a

database of studies that document fish biomass values inside

marine reserves and the surrounding fished areas to compare the

changes in the reef fish community at CPNP to other marine

reserves worldwide. We included only studies of fully-protected,

no-take marine reserves and the nearby fished areas, and only

those studies for which effects were measured for individual

reserves in order to determine: (1) total fish biomass per unit area

inside reserves; (2) ratio of fish biomass on reefs inside and outside

reserves; and (3) annual rate of change of both total fish biomass

and biomass in top trophic levels before and after reserve

implementation. As it is a standard result in calculus that relative

biomass increase can also be written as the rate of change of the

logarithm of the variable [(1/y).dy/dt = d ln(y)/dt)], we estimated

the annual relative rates of change between time zero and time t as

r= ln(xt/x0)/t.

Supporting Information

Table S1 Analyses of variance of Simpsons diversity
index obtained using the different species per each
trophic group for every category.

(PDF)
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