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Exploring relationships between size and 
heat loss in dogs teaches students about 

the ratio of surface area to volume.

Lance Burger

teachiNg prOpOrtiONaL 
reasONiNg thrOugh 

FaMiLiar BiOLOgY

The psychologist Jean Piaget built his theory of learning 
largely on the idea that “knowledge develops as a solution to 
a problem” (1970). Piaget’s meaning of problem, however, is 
not simply any problem but a problem as seen from a learner’s 
personal perspective—or, to echo Cobb, the world of the learn-
er’s personal experience. In constructivist terms, encountering 
a personally meaningful and significant problem throws the 
learner into a state of “cognitive disequilibrium,” and she must 
modify her existing knowledge structures (assimilation) to 
“restore coherence” to solve “her” problem (accommodation). 

Inspired by Piaget, Harel (2000) simplified the technical 
jargon of constructivism into a simple necessity principle: “For 
students to learn, they must see an (intellectual, as opposed 
to social or economic) need for what they are intended to be 
taught” (p. 185). Often, mathematics activities are not difficult, 
engaging, or meaningful enough to evoke in students a feel-
ing of needing to solve a problem. When lessons are designed 
with the necessity principle in mind, students should seldom 
ask, “Why do we need to know this?” Students who see the 
necessity in the mathematics they learn are more apt to become 
engaged in and “own” their mathematical problems—a first 
step for genuinely constructing mathematical knowledge. 

Here I describe a lesson implemented using the necessity 
principle to plan engaging content, discussions, and activities 
meant to promote meaningful student growth in mathematical 
understanding.

THERE MIGHT BE GIANTS? 
Do organisms’ sizes have limits? Could Boccatio’s 300-foot 
giant described by Rose (2000, p. 140) ever have existed (see 
fig. 1)? The teacher begins this lesson with speculation on the 

C
onstructivism has constituted a predominant philo-
sophical trend in mathematics education, but its 
implementation in the classroom has proven to 
be “far more difficult than the reform community 

acknowledges” (Windschitl 2002, p. 131). This difficulty may 
be due in part to administrative cultures that might insist 

on more procedural types of instruction aimed at test-
ing, in part to the lack of an accessible synthesis 

of constructivist theory useful for the everyday 
teacher. Cobb (1994) defines constructivism 

as the “generally accepted view that stu-
dents actively construct their mathemati-

cal ways of knowing as they strive to 
be effective by restoring coherence 

to the worlds of their personal 
experience” (p. 13).
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possible existence of giants, in addition to present-
ing work from Dialogues Concerning Two New Sci-
ences, in which Galileo comments, “Who does not 
know that a horse falling from a height of three or 
four cubits will break his bones, while a dog fall-
ing from the same height or a cat from a height of 
eight or ten cubits will suffer no injury?” (Hawking 
2002, p. 3). 

Galileo goes on to say that if a man’s height be 
increased inordinately, he will fall and be crushed 
under his own weight. Although such insights 
may offer interesting structural observations about 
giants, students can also explore the improbability 
of giants through the ratio of surface area to vol-
ume in the context of heat exchange in biology. 
From the very small to the very large, biology has 
made many adaptations related to the ratio of sur-
face area to volume (Schmidt-Nielson 1984). By 
applying the necessity principle in lesson design, 
teachers can integrate familiar real-world knowl-
edge with proportional reasoning, giving students 
enriching opportunities to investigate the possibil-
ity of giants from the mathematical perspective of 
the surface-area-to-volume ratio. 

OF DOGS HOT AND COLD: AN  
INTERESTING QUESTION 
Although this lesson begins with several engag-
ing questions about giants, we continue by talking 
about dogs of various sizes (because most students 
are familiar with dogs) to establish a context for an 
interesting question. After students finish sharing 
what kinds of dogs they have, the teacher presents 
several photographs that show large and small dogs 

in various environments. Some photographs show 
large dogs indoors and panting, whereas puppies 
of the same breed appear indoors and nonpanting, 
even when bundled up with cozy blankets. Other 
photographs depict large nonpanting dogs in the 
snow, whereas dogs of the same breed and size are 
panting while in warm surroundings. To avoid 
alienating cat owners, the teacher also shows sev-
eral photographs depicting panting big cats, such as 
tigers and lions in a hot-looking African savannah, 
in contrast to small, nonpanting house cats and kit-
tens in comfortable indoor environments. 

The students discuss their observations about the 
photographs and how they relate to their own experi-
ences with their pets. From these discussions, a funda-
mental class question usually emerges in the form of 
the Cooling Dog problem: Why do large dogs appear 
more overheated and pant more than small dogs?

THE DOUBLE-DOG DARE
For the next part of the lesson, students work with 
multilink cubes to build models of small and large 
dogs for hands-on reasoning. First, students con-
struct a “puppy” by using several two-dimensional 
net diagrams as a blueprint (see fig. 2). Because the 
puppy models do not require many cubes, students 
construct these models individually. In working 
from the net diagrams, students usually make sev-
eral types of errors. For example, the puppies in 
figure 3 are too literally based on front, back, and 
side views. Figure 4 similarly shows a puppy that 
matches front and side views but does not fit top 
and bottom views. Working from the net diagrams 
helps students develop preliminary concrete visu-
alization skills to distinguish the characteristics of 
surface area and volume needed for later discus-
sions, proportional reasoning, and computations.

After students complete the puppy models indi-
vidually, they work in groups to construct a larger 
version, doubled in length, width, and height. One 
point regarding the use of manipulatives and the 
necessity principle: Necessity drives the “need” 
for groups. This lesson warrants using groups 

because of the significantly greater number of 
blocks involved and the questions students often 
have about doubling the size of the puppy. (I avoid 
designing lessons with group work unless a mean-
ingful need exists for more hands and minds to 
accomplish specific lesson goals.) 

Although the instructions to double the puppies 
in length, width, and height are explicit, various 
issues often arise during the activity. Some students 
double only the height; others double two dimen-
sions but not the third. Usually several groups 
isolate one part of the puppy, such as the tail or 
nose, and determine that it consists of one cube of 
eight blocks. To groups experiencing difficulty, the 
teacher may have to enlarge a photograph of a stu-
dent’s puppy with a document camera to show that 
the models of small and large dogs appear qualita-
tively similar. When the students have completed 
the large and small dogs, they are ready to bridge 
mathematical ideas to their models in the context of 
the overall lesson problem (see fig. 5).

RELATING VOCABULARY TO MODELS
To relate vocabulary to models with minimal 
teacher involvement, students remain in their 
groups and brainstorm about familiar mathematics 
concepts that may be associated with their models 
in the context of the Cooling Dog problem. Terms 
such as mass, density, weight, length, width, height, 
surface area, and volume commonly arise in group 
discussions. Also at this time, it is helpful for stu-
dents to review quickly the meanings of their brain-

stormed terms, an activity that affords an excellent 
context for the necessity of accurate and uniform 
vocabulary in mathematics. 

After students work through the meanings of 
their commonly generated terminology via class 
discussion, they usually determine that volume 
is the best way for describing the “size” of a dog, 
whereas surface area in some way relates to the 
“skin” of the dog and its ability to cool. Although 
students usually determine that surface area is a 
key concept pertaining to how dogs cool off, they 
often have difficulty justifying why surface area 
is relevant to cooling. To better provide concrete 
intellectual necessity for why surface area is 
important in the lesson, the teacher gives a brief 
demonstration so that students can link their prior, 
more intuitive, knowledge of cooling with the con-
cept of surface area.

A “COOL” DEMONSTRATION
The surface area cooling demonstration begins 
with the teacher presenting two equal-volume 
Styrofoam cups of water that had previously been 
boiling at approximately 100ºC. After showing that 
the thermometer readings are identical for the two 
cups, the teacher pours one cup into a shallow plas-
tic rectangular pan (approximately 20 × 30 cm) and 
pours the other cup into an identical cup. Both con-
tainers are at room temperature. While the water is 
cooling in the separate containers, the teacher asks 
the class to discuss the setup of the experiment to 
ensure that everyone will grasp the experiment’s 
outcome. After students understand that equal vol-
umes of water at the same temperatures are poured 
into containers with different surface area, the 
teacher measures the temperatures of the pan and 
cup of water, showing that the water in the pan is 
significantly cooler than the water in the cup (45ºC 
cooler within 5 minutes). 

The following dialogue excerpt captures students 
encountering an important moment of cognitive 

Fig. 1  Could giants such as those depicted here ever exist? 

Fig. 2  Net diagrams provide the blueprint for “puppy” 

construction.

	 Front and	 Sides	 Top and 	
	 back		  bottom

Fig. 3  Each puppy shown fails to fulfill some of the 

requirements.

Fig. 4  Smaller building blocks are assembled to make the 

larger construction.
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Fig. 5  The completed dog looms large over the puppy.
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To resolve their previous questions, students can 
now reflect on the large-dog ratio in several differ-
ent ways. 

Students can see that 
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which shows that the situation for a large dog is 
comparable to that of a small dog having half as 
much surface area. The equation
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shows that the large dog’s cooling capacity is like 
that of two small dogs having only the skin of one 
small dog to cool. The teacher can also guide stu-
dents to the mathematical explanation of the role 
of panting in cooling. For example, a dog’s panting 
involves moving the flat tongue outside the body, 
where it can function as a radiator, liberating 
heat by increasing the dog’s surface area without 
increasing its volume. 

From the large ears of the elephant to the struc-
ture of the lung (holes simultaneously increase sur-
face area and decrease volume, greatly increasing 
the S/V ratio), the surface-area-to-volume ratio is a 
rich concept that may help interpret many adapta-
tions in biological structures. The surface-area-to-
volume ratio not only influences the development 
of biological structures but also can affect metabolic 
rates. For example, large animals tend to have 
slower metabolic rates; they have lower surface-
area-to-volume ratios than other small (homeother-
mic) mammals, such as mice, and as a result they 
lose less heat per gram (Wells 2007). 

CONCLUSION: GENERALIZING 
FROM DOGS TO GIANTS
Students learn to generalize doubling by propor-
tional reasoning and reflection on the fact that a 
third doubling of the puppy model would lead to 
the following result:
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Using rulers, students then calculate that for the 
300-foot giant in figure 1, an assumed 5-foot-tall 
“small man” near the giant’s ankle is doubled 
approximately 6 times, giving

disequilibrium as they discuss the surface area cool-
ing demonstration in the context of the Cooling Dog 
problem:

Student 1:  The pan of water cooled faster because 
the water is thinner, like my Chihuahua is 
skinny more than a big dog, so it gets cold easier. 

Student 2:  The cup of water has the same amount 
as the pan. The pan is more spread out, so it hits 
the air more. Your Chihuahua is not as big as a 
big dog, so it’s not the same! 

Student 3:  Yeah, the area is bigger on the pan like 
the area is bigger for big dogs.

Student 1:  Then the big dog is cold more … but 
they get hot more … don’t they?

Student 2:  Maybe they have more hair than little 
dogs, so they get hot more.

Student 4:  We have a really big Great Dane that’s 
always panting, but he has short fur.

Student 1:  Yeah … the big dog has more volume 
than the little dog, so it’s different than the 
water in the pan, ’cause they had the same 
amount. Now I see what you meant!

As the groups settle on the notion that surface 
area is a mathematical quantity related to both the 
models’ sizes and how fast objects cool, they also 
tend to become aware that large dogs, with more 
surface area than small dogs, will cool off faster. 
So why do large dogs appear to be hot more than 
small dogs, as students originally observed from the 
photographs? Having students suggest this puzzling 
question is an intentional component of the lesson 
design, motivating them to see the necessity of the 
ratio concept for understanding the change of sur-
face area in relation to volume. 

COUNTING, CALCULATING, AND RESOLVING 
Now that students have constructed their models, 
they can focus directly on computing the surface 
areas and volumes of the small and large dogs. 
Although volume is usually a simple matter of 
counting blocks, many students tend to neglect 
counting the exposed surface areas on the insides of 
the legs, shoulders, bottoms of feet, and ears. How-
ever, these problems are left to students to work 
out and discover in groups; the teacher gives feed-
back simply in terms of right or wrong surface area 
and volume computations. 

Some groups attempt to calculate the surface 
area and volume of the large dog through a fairly 
tedious process of counting faces and blocks, 
whereas other groups often discover that “a block” 
of the small dog is a 2 × 2 × 2 cube of blocks for the 
large-dog model. When one group of students was 
asked to discuss the quick speed of their calcula-
tions, they explained that each block of the small 

dog is 8 blocks for the large dog, so the new volume 
is 8 × 22u3 = 176u3 (u = units). Similarly, because 
the surface of just the nose of the large dog consists 
of 4 small-dog 1u2 nose surfaces, then the surface 
area of the entire large dog is 4 × 90u2 = 360u2.

Common student observations based on the 
computational results include the following: 

• The large dog has more surface area than the 
small dog and hence more surface area to cool 
itself (in agreement with the surface area cooling 
demonstration).

• The large dog has a greater volume to cool off 
than the small dog.

The second observation is important to students’ 
unlocking the proportional reasoning clues needed 
to resolve the Cooling Dog problem, as exemplified 
in the following dialogue:

Student 1:  The big dog has more area than the lit-
tle dog to cool off, but the big dog has a lot more 
that needs to cool off!

Student 2:  Yeah, if they were the same size, the 
big dog would be cold, but the big dog is a lot big-
ger! They got a lot more they got to cool … and 
so not as much as the little dog does.

The preceding dialogue suggests that, from a 
constructivist perspective, students are making 
connections among surface area, volume, and cool-
ing. These connections may eventually help restore 
coherence to thinking that tends to view the models 
strictly with surface area as distinct from volume 
rather than as surface area that changes in relation 
to changing volume. Equipped with such insights, 
students are ready to use proportional reasoning 
to address questions surrounding the Cooling Dog 
problem mathematically.

SURFACE-AREA-TO-VOLUME RATIO
Having now reached a point in the lesson of achiev-
ing a multifaceted motivation for the ratio concept, 
the teacher formally introduces the surface-area-
to-volume ratio to the students as a useful ratio 
needed to understand the problems they have 
encountered. Working with the ratio in groups, stu-
dents calculate that the small dog has an average of
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or 1/64 of the original surface-area-to-volume ratio. 
Compared with the small man, the giant has less 
than 1/64 of the skin-cooling capacity, or, alterna-
tively, 64 of the small men have only the surface 
area or “skin” of one small man with which to cool 
off. Without structural or metabolic adaptations, 
a giant such as this would most certainly be more 
comfortable in extremely cold climates—if he could 
even exist at all without overheating. 
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